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Abstract— In our previous work, we compared the perfor-
mance of the extended Kalman filter (EKF), unscented Kalman
filter (UKF), and particle filter (PF) for the angle-only filtering
(AOF) problem in 3D using Cartesian coordinates and modified
spherical coordinates (MSC) for the relative state vector. We
found that the UKF-MSC and EKF-MSC had the best perfor-
mance in accuracy, the UKF-MSC being slightly better than the
EKF-MSC. The PF didn’t perform well compared with the EKF
and UKF and had a higher computational cost. In this work, we
compare the performance of the particle flow filter (PFF) with the
other filters for the AOF problem. In addition, we also analyze
the performance of two versions of the ensemble Kalman filter
(EnKF) in this comparative study. We present numerical results
from Monte Carlo simulations to analyze the state estimation
accuracy and computational cost of these filters.

Keywords: Angle-only filtering (AOF) in 3D, Modified spherical

coordinates (MSC), Extended Kalman filter (EKF), Unscented

Kalman filter (UKF), Particle filter (PF), Particle flow filter

(PFF), and Ensemble Kalman filter (EnKF).

I. INTRODUCTION

The angle-only filtering (AOF) problem in 3D using bearing

and elevation angles occurs in a number of important real-

world problems. These problems include passive ranging using

an infrared search and track (IRST) sensor, passive sonar,

passive radar in the presence of jamming [6], satellite-to-

satellite passive tracking, ballistic object (a missile or satellite)

tracking by optical telescopes [10], and ground target tracking

by small unmanned aerial vehicles by video cameras [34].

Significant research has been performed for the bearings-only

filtering (BOF) problem in 2D, see [6], [35] and the references

therein. However, the number of papers on the AOF problem

in 3D is relatively small [1], [22], [28], [31]— [33], [34], [36],

[38], [39].

Three types of coordinate systems, Cartesian coordinates,

modified spherical coordinates (MSC), and log spherical co-

ordinates (LSC) are used to represent the relative state vector

[31]–[33], [38] in the AOF problem. The MSC and LSC are

the 3D analogue of the MPC [35] and LPC [8], respectively,

for the BOF problem. The components of the Cartesian

coordinates are 3D position and velocity. Stallard [38] first

proposed the modified spherical coordinates (MSC) for the

AOF problem. The elements of MSC are elevation, elevation-

rate, bearing, bearing-rate times cosine of elevation, range-rate

divided by range, and the inverse of range [31]–[33]. The LPC

were proposed in [31], whose first five elements were the same

as the first five of the MSC. The sixth element of the LSC is

the logarithm of range. Numerical results in [31] show that

the EKF-MSC and EKF-LSC have nearly the same estimation

accuracy. Therefore, the MSC only were used in [32], [33]

and in this paper we only study the MSC.

The discrete-time EKF using Cartesian coordinates for the

relative state vector in the near-constant velocity model [4]

in 3D and nonlinear measurement model for bearing and

elevation does not face the collapse of the covariance matrix

as in the BOF. However, as in MPC, the dynamic model

using MSC is nonlinear and complex. Since the bearing

and elevation are components of the MSC, the measurement

model is linear and the measurement update step in MSC is

straightforward [4].

The particle flow filter (PFF) developed by Daum and

Huang [10], [11], [15] has received a great deal attention in

the Fusion community because it has been claimed to have

superior accuracy and computational speed. This has led to

publications by other researchers [5], [9], [16], [29], [30]. In

many cases, detailed steps for implementing the PFF algorithm

are missing; the paper [16] provides algorithm details for the

benefit of a graduate student or researcher.

Daum and Huang studied the AOF problem of a long-range

ballistic missiles using angle-only measurements in [10] and

used the MSC for the relative state vector. They compared the

performance of the EKF-MSC and the particle flow filter (PFF)

using MSC (PFF-MSC) using a time interval of 400 seconds.

They used 500 particles in the PFF-MSC and used 100 Monte

Carlo simulations. They studied various geometries by varying

the angle between the velocity of the missile and the line-of-

sight (LOS) of the sensor and presented the median error for

missile position. Details on the missile dynamic model, sensor

trajectory, and the measurement accuracy were not presented

in [10]. It was claimed that for certain difficult geometries,

the PFF-MSC was more accurate than the EKF-MSC by an

order of magnitude [10], [15]. A close examination of the plots

in Figs. 2–6, however, shows that the median position error
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for the EKF-MSC and PFF-MSC were nearly the same after

200 - 300 seconds, and the EKF-MSC had a lower median

position error than the PFF-MSC. Only in two geometries (25

deg and 10 deg), the EKF-MSC had a higher median position

error than the PFF-MSC around 100 s and 150 s, respectively.

For these two geometries, the EKF-MSC had lower median

position error after 200 s and 300 s, respectively.

Exact SDEs for MSC and LSC were derived in [31],

from the near-constant velocity model in 3D for the relative

Cartesian state vector. Then EKFs were implemented for MSC

and LSC by numerically integrating nonlinear differential

equations for the predicted state estimate and covariance

matrix jointly. This technique is an example of continuous-

discrete filtering (CDF).

Although we use a dynamic model that is identical to

that analyzed in [1], [38], in their EKF implementations the

process noises are not properly accounted for. Consequently,

the approximate method used in [1], [38] to calculate the

predicted covariance is not valid over time intervals where

the relative geometry between the target and ownship changes

substantially. In this paper, the predicted state estimates and

covariances are evaluated using the second approach for the

exact discrete-time dynamic model in MSC.

Two classes of filtering algorithms using Cartesian coor-

dinates and MSC for the relative state vector [32], [33] are

used in this paper. The dynamic and measurement models

are discrete in each class. For algorithms using Cartesian

coordinates, the near-constant velocity model in 3D is linear

and the measurement model is nonlinear. In MSC, the dynamic

model is nonlinear and the measurement model is linear. An

EKF [4], [19], an UKF [26], [27], [35] and a bootstrap particle

filter (BPF) [3], [21], [35] are used for each class.

To initialize the filters, we employ the algorithms described

in [32], [33]. Details of the EKF (Cartesian EKF or CEKF

and EKF-MSC) [4], [19] the UKF [26], [27] and the BPF [3],

[21], [35] for this 3D angle-only setting can be found in [33]

and we do not repeat them in this paper. Furthermore, as the

MSC version of an algorithm differs only in the propagation

step and in evaluation of the predicted observation, we have

not included separate algorithms for the MSC versions.

The rest of the paper is organized as follows. In Section II,

we introduce the tracker and sensor coordinate frames and dis-

cuss different coordinate systems for the target and ownship.

The dynamic models of the target and ownship and the mea-

surement models using the Cartesian coordinates and MSC are

provided in Section III. In Section IV, algorithms for the Carte-

sian PFF (CPFF), Cartesian PFF (CPFF-localized), Cartesian

deterministic EnKF (CDEnKF) and Cartesian stochastic EnKF

(CSEnKF) are discussed. These algorithms had previously

not been used for this problem. Numerical results based on

simulations are presented in Section V. Finally our conclusions

are summarized in Section VI.

II. COORDINATE SYSTEMS FOR TARGET AND OWNSHIP

The origin of the tracker coordinate frame (T frame) is

specified by the geodetic longitude λ0, geodetic latitude φ0,

and geodetic height h0. As indicated in Figure 1 the X , Y ,

and Z axes of the T frame are directed along the local east,

north, and upward directions, respectively. We assume that the

ownship’s motion is deterministic with known parameters and

its position is known. The ownship performs maneuvers so

that the target state becomes observable. Since we use stan-

dard conventions for coordinate frames and angle variables,

the rotational transformation TS
T from the T frame to the

sensor frame (S frame) is defined differently in our approach

compared with that in [38].
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Fig. 1: Definition of tracker coordinate frame (T frame),

bearing β ∈ [0, 2π] and elevation angle ǫ ∈ [−π/2, π/2].
A. Cartesian Coordinates for Relative State Vector

The state variables of the target and the ownship are defined

as follows, in Cartesian co-ordinates:

xt :=
[

xt yt zt ẋt ẏt żt
]′
, (1)

xo :=
[

xo yo zo ẋo ẏo żo
]′
. (2)

The state vector of the target with respect to the ownship is

defined by

x := xt − xo. (3)

Let x = [x y z ẋ ẏ ż]′. Let the range vector of the

target from the ownship be rT. Then rT is defined by

rT :=
[

x y z
]′
=

[

xt − xo yt − yo zt − zo
]′
.
(4)

The range is defined by

r := ‖rT‖ =
√

x2 + y2 + z2, r > 0. (5)

The range vector can be expressed in terms of range, bearing

(β) and elevation (ǫ), as defined in Figure 1, by

rT = r





cos ǫ sinβ
cos ǫ cosβ

sin ǫ



 , β ∈ [0, 2π], ǫ ∈ [−π/2, π/2].

(6)

Finally, the ground range is defined as follows:

ρ :=
√

x2 + y2 = r cos ǫ, ρ > 0. (7)
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B. Modified Spherical Coordinates for Relative State Vector

We follow the conventions of Stallard [38], and define ω as

a component of the MSC, where

ω(t) := β̇(t) cos ǫ(t). (8)

Let ζ(t) denote the logarithm of range r(t)

ζ(t) := ln r(t). (9)

Then

r(t) = exp[ζ(t)]. (10)

Differentiating (9) with respect to time, we get

ζ̇(t) = ṙ(t)/r(t). (11)

The relative state vector of the target in MSC is defined by

[31], [38]

ξ(t) :=
[

= ω(t) ǫ̇(t) ζ̇(t) β(t) ǫ(t) 1/r(t)
]′
. (12)

The components of the MSC defined in [38] and [31] are

the same; however, the ordering is different.

III. DYNAMIC MODELS

We begin by presenting the discrete-time dynamic models

of the target and ownship in the T frame. Next, we present the

corresponding dynamic models. The target follows the near-

constant velocity model in 3D, while the ownship follows a

sequence of constant velocity (CV) and coordinated turn (CT)

models in a plane parallel to the XY plane of the T frame.

A. Dynamic Model for State Vector and Relative State Vector

in Cartesian Coordinates

At time tk, let the Cartesian state vector of the target be

given by xt
k. Following [4], [19], the discrete-time dynamic

model of the target can then be defined as follows

xt
k = Fk−1x

t
k−1 +wt

k−1, (13)

where Fk−1 and wt
k−1 are the state transition matrix [4], [19]

and integrated process noise [19], respectively, for the time

interval [tk−1, tk],

Fk−1 = F(tk, tk−1) :=

[

1 ∆k

0 1

]

⊗ I3, (14)

wt
k−1 :=

∫ tk

tk−1

F(tk − t)wt(t) dt, (15)

where ∆k := tk−tk−1 is the sampling interval and ⊗ refers to

the Kronecker product. Using the properties of the continuous-

time process noise wt(t), state transition matrix Fk−1 defined

in (14), and the definition of wt
k−1 in (15), it can be shown

that wt
k−1 is a zero-mean Gaussian white integrated process

noise with covariance Qk−1

wt
k−1 ∼ N(wt

k−1;0,Qk−1), (16)

Qk−1 =

[

∆3
k/3 ∆2

k/2
∆2

k/2 ∆k

]

⊗ diag(qx, qy, qz). (17)

Here, qx, qy, qz are the power spectral densities of the process

noise [19] along the X , Y , and Z axes respectively.

As the dynamic model of the ownship is deterministic, the

process noises are not used to simulate its motion. The CV

and CT motions of the ownship are defined as follow:

xo
k = Fk−1x

o
k−1, (18)

xo
k = FCT(∆k, ω)x

o
k−1, (19)

where

FCT(∆, ω) =
















1 0 0 sin(ω∆)/ω −[1− cos(ω∆)]/ω 0
0 1 0 [1− cos(ω∆)]/ω sin(ω∆)/ω 0
0 0 1 0 0 ∆
0 0 0 cos(ω∆) − sin(ω∆) 0
0 0 0 sin(ω∆) cos(ω∆) 0
0 0 0 0 0 1

















.

(20)

Using (13) in the definition (3) of the relative state vector

and then adding and subtracting Fk−1x
o
k−1, we get

xk = Fk−1xk−1 +wt
k−1 − uk−1, (21)

where

uk−1 := xo
k − Fk−1x

o
k−1. (22)

We note that when ωo
k approaches zero, FCT(∆k, ω

o
k) reduces

to Fk−1 and uk−1 becomes zero.

B. Dynamic Model for Relative State Vector in Modified

Spherical Coordinates

Let fMSC
C : R

6 → R
6 denote the transformation from

relative Cartesian coordinates to MSC. Similarly, let fCMSC :
R

6 → R
6 denote the inverse transformation from MSC to

relative Cartesian coordinates. Then,

ξk = fMSC
C (xk), (23)

xk = fCMSC(ξk). (24)

Functional forms of fMSC
C (xk) and fCMSC(ξk) are presented in

[33]. Then, using (21) in (23), we get

ξk = fMSC
C (Fk−1xk−1 +wt

k−1 − uk−1). (25)

We have

xk−1 = fCMSC(ξk−1). (26)

Substitution of (26) in (25) gives

ξk = fMSC
C (Fk−1f

C
MSC(ξk−1) +wt

k−1 − uk−1). (27)

Formally, we can write (27) as

ξk = b(ξk−1,uk−1,w
t
k−1), (28)

where b is a nonlinear function of ξk−1, uk−1, and wt
k−1. We

note that a closed form analytic expression for the nonlinear

function b is difficult to obtain. However, it is straightforward

to calculate the predicted state estimate ξ̂k|k−1 approximately

given ξ̂k−1|k−1, using nested functions in (27). It can be
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seen from (28) that the process noise wt
k−1 is nonlinearly

transformed in the MSC dynamic model. This makes the EKF

and UKF slightly more complicated compared to the usual

dynamic models in which the process noise is additive.

C. Measurement Models

The passive sensor collects bearing and elevation measure-

ments {zk} at discrete times {tk}. The measurement model for

the bearing and elevation angles using the relative Cartesian

state vector xk is

zk = h(xk) + nk, (29)

where h(xk) :=

[

βk
ǫk

]

=

[

tan−1(xk, yk)
tan−1(zk, ρk)

]

, (30)

where the ground range ρk is defined in (7) and nk is a zero-

mean white Gaussian measurement noise with covariance R

nk ∼ N (nk;0,R), R := diag(σ2
β , σ

2
ǫ ). (31)

The measurement model for the bearing and elevation

angles βk, ǫk using MSC is

zk = Hξk + nk, (32)

H :=

[

0 0 0 1 0 0
0 0 0 0 1 0

]

. (33)

IV. NONLINEAR FILTERING USING CARTESIAN AND

MODIFIED SPHERICAL COORDINATES

The dynamic model (near-constant velocity model in 3D)

for Cartesian co-ordinates is linear and the measurement model

for bearing and elevation is nonlinear for this case. On the

other hand, the dynamic model using MSC is nonlinear as

in (27) or (28). In addition, the process noise is not additive.

Since, the bearing and elevation are elements of the MSC, the

measurement model (32) is linear in this case.

Detailed descriptions of algorithms used for the Cartesian

and Spherical (MSC) versions of the UKF, EKF and BPF can

be found in [32] and [33]. The BPF algorithm was slightly

modified in this study by introducing a resampling step when

the effective sample size fell below a certain threshold, as

opposed to resampling at every step. In this section, we present

the algorithms used for the particle flow filter (PFF) and the

ensemble Kalman filter (EnKF) .

A. Particle Flow Filter

In the particle flow filter (PFF), [12], [14], [13], a set of

particles are migrated smoothly from the previous to the next

time instant using a particle flow derived through a differential

equation. The unnormalized conditional probability density

can be expressed as a product of two probability density

functions as follows:

p̃(xk|z1:k) := p(zk|xk)p(xk|z1:k−1). (34)

We denote p(zk|xk), and p(xk|z1:k−1) by ψ(xk) and g(xk)
respectively. Daum and Huang introduce a function φ(x, λ) as

follows:

φ(x, λ) := log g(xk) + λ logψ(xk). (35)

with λ ∈ [0, 1]. At each time step, the particle flow is

created by varying λ from 0 to 1. The objective is to evaluate
dx
dλ

for each particle and migrate them to the next time

instant accordingly. In [13], Daum and Huang generalized and

improved the filter using the Fokker-Planck equation with zero

process noise. Denote dx
dλ

by f(x, λ). Under the condition that

the function φ is smooth and non-zero, the following relation

between the function φ and f is derived:

∂ log φ

∂x
f(x, λ) + log(ψ) = −Tr

(

∂f

∂x

)

. (36)

The exact flow of the probability density function can be

evaluated by solving the above differential equation. For a

nonlinear measurement model with Gaussian noise, a closed

form solution for dx
dλ

can be obtained [16], using a first order

Taylor series approximation of the measurement function, and

it is given by
dx

dλ
= A(λ)x+ b(λ), (37)

where

A = −1

2
PH⊤

k (λHkPH⊤
k +R)−1Hk, (38)

b = (I+2λA)[(I+λA)PH⊤
k R

−1(zk−ek)+A+xk]. (39)

Here, xk denotes the predicted value of xk, P is the pre-

dicted covariance matrix, Hk := ∂h(x)
∂x

|
x=x

i

k|k−1

, and ek =

h(xk|k−1) − Hk(xk|k−1) denotes the error induced in ap-

proximating h(xk) by Hk(xk). The predicted value of the

covariance P, can be evaluated by an unscented or extended

Kalman filter running in parallel to the particle flow filter to

improve performance. Pseudocode used for the particle flow

paper can be found in Algorithm 1. A slight modification

of the original PFF algorithm by Daum and Huang was

suggested in [16], where linearization of the measurement

function is performed at each particle location, instead of

only at the mean. In this filter, which we refer to as the PFF

(localized), the pseudocode from the second for loop onwards

was replaced with the pseudocode provided in Algorithm 2.

Algorithms 1 and 2 provide the recursion steps for Cartesian

co-ordinates. For the MSC versions of these two filters, the

difference is in the propagation step, where one has to use

(28) to propagate the particles, and in the evaluation of A and

b. As the measurement model (32) is linear, a Taylor series

approximation of h(·) is not required for the MSC case, and

the term ek in (39) is zero.

B. Ensemble Kalman Filter

The ensemble Kalman filter (EnKF) [17], [18], [20], [37],

[41] is an extension of the Kalman filter for non-linear models,

where instead of a single state estimate the filter maintains a

statistical sample of state estimates, termed as the ensemble.

This filter executes the task of estimation by minimizing the

error covariance, where error statistics are modeled using

the ensemble of predicted states. At the forecast step, using

the ensemble of forecast states, the sample mean and error

covariances are evaluated. The forecast ensemble members
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Algorithm 1: A recursion of the particle flow filter with

Cartesian coordinates (CPFF).

Input: EKF/UKF estimates mk−1|k−1, covariance matrix

Pk−1|k−1 and the particle cloud {xi
k−1} at time

tk−1 and the measurement zk.

Output: updated EKF/UKF mean m̂k|k, covariance

matrix Pk|k and cloud {xi
k} at time tk.

for k = 1, . . . , T do

Propagate particles: xi
k = F(∆k)x

i
k−1 − uk−1

Calculate the sample mean xk = 1
N

N
∑

i=1

xik

Apply UKF/EKF Prediction

(mk−1|k−1,Pk−1|k−1) → (mk|k−1,Pk|k−1)
for j = 1, . . . , Nλ do

Set λ = j∆λ
Calculate Hx by linearizing h(·) at xk

Calculate A and b using (38) and (39)

for i=1,. . . , N do

Evaluate
dxi

k

dλ
from (37) for each particle

Migrate particles xi
k = xi

k +∆λ
dxi

k

dλ

end

Re-evaluate sample mean xk using the updated

particles {xi
k}.

end

Apply UKF/EKF update :

(mk|k−1,Pk|k−1) → (mk|k,Pk|k).
Estimate x̂k from the particles {xi

k} (sample mean or

robust mean)

Optional: redraw particles xi
k ∼ N(x̂k,Pk|k).

end

are combined to evaluate the ensemble covariance of the

predicted observations and the cross covariance of the state

and observation ensembles. These are used to compute a single

Kalman gain matrix, which is subsequently used to update the

ensemble using new observation.

Different versions of the EnKF have been proposed, and

these can be classified into two categories, stochastic [17],

[18], [20] and deterministic [37], [41]. The two classes are

identical in the forecast step and differ only in the analysis

step. While the stochastic version of the filter computes the

observation error covariance by perturbing the observation, the

deterministic version avoids this step.

The stochastic version of the EnKF implemented for this

paper follows the steps discussed in [20] and is described

in the pseudocode given in Algorithm 3. To implement the

deterministic version, we used a Taylor series approximation

for the matrix square root, as suggested in [37]. The steps are

elaborated in Algorithm 4.

For the relative MSC, these algorithms differ only in the

propagation step, where (28) is used to obtain the forecast en-

semble of state variables, and in evaluating the corresponding

forecast value of the observation, which is evaluated by using

the linear measurement equation given in (32).

Algorithm 2: A recursion of the particle flow filter-

localized with Cartesian coordinates (CPFF-localized).

for j = 1, . . . , Nλ do

Set λ = j∆λ
Calculate Hx by linearizing h(·) at xk

Calculate Ai and bi using (38) and (39)

for i=1,. . . , N do

Evaluate
dxi

k

dλ
from (37) for each particle

Migrate particles xi
k = xi

k +∆λ
dxi

k

dλ

end

Re-evaluate xk using the updated particles {xi
k}.

end

Apply UKF/EKF update :

(x̂k|k−1,Pk|k−1) → (x̂k|k,Pk|k).
Estimate x̂k from the particles {xi

k} (sample mean or

robust mean)

Set mk|k = x̂k Optional: redraw particles

xi
k ∼ N(x̂k,Pk|k).

V. NUMERICAL SIMULATIONS AND RESULTS

The scenario used in our simulation is the same as in

[32], [33], and is similar to that used in [7], with changes

to make it three dimensional in nature. The initial height zo1
of the ownship is 10.0 km. The target’s initial ground range

ρ1, bearing β1, and height zt1 are shown in Table I. Then

the initial elevation ǫ1 can be calculated. Table I also shows

the target’s initial speed s1, course c1 in the XY -plane and

the Z component of velocity żt1. The target’s initial position

and velocity in Cartesian coordinates can be found from

Table I as (138/
√
2, 138/

√
2, 9) km and 297/

√
2(−1,−1, 0)

m/s, respectively. The motion of the target is governed by

the near-constant velocity model. The power spectral densi-

ties (qx, qy, qz) of the zero-mean white acceleration process

noise along the X , Y , and Z axes of the T frame are

(0.01, 0.01, 0.0001) m2s−3, respectively.

The ownship moves in a plane parallel to the XY -plane at

a fixed height of 10 km, with a motion profile as described in

Table II. In Table II, ∆t represents the duration of the segment,

∆φ is the total angular change during the segment, and ωo is

the angular velocity of the ownship during the segment. The

ownship trajectory and the true target trajectory from the first

Monte Carlo run are shown in Figure 2.

The measurement sampling time interval is 1.0 s. The

bearing and elevation measurement error standard deviations

used in our simulation were 1, 15 and 35 mrad (0.057,

0.857 and 2 degrees), representing high, medium, and low

measurement accuracy, respectively. We used 1000 Monte

Carlo simulations to calculate various statistics such as the

root mean square (RMS) position and velocity errors.

The filters are initialized as described in [33] with the

parameters shown in Table I. PFs are implemented with a

sample size of 10,000. The EnKFs and PFFs are run with

500 ensemble members and 500 particles respectively. These

numbers were so chosen that increasing them further did not
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Algorithm 3: A recursion of the stochastic ensemble

Kalman filter with Cartesian coordinates (CSEnKF).

Input: The posterior ensemble {xi
k−1} at time tk−1 and

the measurement zk.

Output: updated ensemble {xi
k} at time tk.

for k = 1, . . . , T do
Propagate particles to obtain the forecast state

ensemble xi
k = F(∆k)x

i
k−1 − uk−1

Calculate the sample mean of the forecast state

ensemble xk = 1
N

N
∑

i=1

xik

for i = 1, . . . , N do

Compute the predicted observations: ẑik = h(xi
k)

Perturb the observations by adding noise

ẑik = ẑik + ni
k where ni

k ∼ N(0,R)
end

Calculate the sample mean of the forecast

observation ensemble zk = 1
N

N
∑

i=1

ẑik

Evaluate the error matrices Ex
k , Ez

k:

Ex
k = [x1

k − xk · · · xN
k − xk] and

Ez
k = [z1k − zk · · · zNk − zk]

Evaluate the ensemble covariance terms

P
x,z
k = 1

N−1E
x
k(E

z
k)

⊤

P
z,z
k = 1

N−1E
z
k(E

z
k)

⊤

Compute the Kalman gain K = P
x,z
k (Pz,z

k )−1

Update ensemble members

for i = 1, . . . , N do

xi
k = xi

k +K(zk − ẑik)
end

end

lead to any substantial improvement in tracking performance.

The Cartesian versions of the PFF were run alongside an EKF

to propagate the covariance matrices while the PFF-MSC was

implemented using a UKF-MSC.

Two measures of performance are used to compare the

algorithms. The first is the RMS position error averaged from

the end of the last observer maneuver to the end of the

surveillance period. The second performance measure is the

RMS position error at the end of the surveillance period.

The results are shown in Tables III and IV. For the filters

implemented in MSC, these errors are evaluated using the

relative Cartesian coordinates calculated exactly from MSC,

following Appendix 1B in [33]. The execution times of the

algorithms are given in Table V.

The best performance is achieved by the two implementa-

tions of the PFF in Cartesian co-ordinates, followed closely

by the MSC versions of the PFF, EKF, UKF and the DEnKF.

Especially for low measurement accuracy, the performance

improvements of these filters over the others are substantial.

Among the two versions of the ensemble Kalman filters,

the deterministic version was found to outperform to a relative

extent. For both filters, the performance was better when MSC

Algorithm 4: A recursion of the deterministic ensemble

Kalman filter with Cartesian coordinates (CDEnKF).

Input: The posterior ensemble {xi
k−1} at time tk−1 and

the measurement zk.

Output: updated ensemble {xi
k} at time tk.

for k = 1, . . . , T do
Propagate particles to obtain the forecast state

ensemble xi
k = F(∆k)x

i
k−1 − uk−1

Calculate the sample mean of the forecast state

ensemble xk = 1
N

N
∑

i=1

xik

for i = 1, . . . , N do

Compute the predicted observations: ẑik = h(xi
k)

end

Calculate the sample mean of the forecast

observation ensemble zk = 1
N

N
∑

i=1

ẑik

Evaluate the error matrices, normalized by 1√
N−1

:

Ex
k = 1√

N−1
[x1

k − xk · · · xN
k − xk] and

Ez
k = 1√

N−1
[z1k − zk · · · zNk − zk]

S = Ez
k(E

z
k)

⊤ +R

U = I− (Ez
k)

⊤S−1Ex
k

Use a first order Taylor series approximation to

evaluate the square root of U: T = I− 0.5U
Compute the Kalman gain K = Ex

k(E
z
k)

⊤S−1

Update the mean of the state ensemble

xk = Ex
k +K(z− zk)

Update the state error ensemble Ex
k = Ex

kT

Update the ensemble members:

for i = 1, . . . , N do

xi
k = xk +

√
N − 1Ex

k

end

end

TABLE I: Initial parameters of target.

Variable Value

ρ1 (km) 138.0

β1 (deg) 45.0

ǫ1 (deg) -0.415

zt
1

(km) 9.0

s1 (m/s) 297.0

c1 (deg) -135.0

żt
1

(m/s) 0.0

was used as compared to Cartesian co-ordinates.

It is interesting to note that the particle flow filter demon-

strated a significant improvement over the bootstrap particle

filter. The former achieves this performance improvement by

using only 500 particles, as compared to 10,000 particles used

by the bootstrap filter. The PFF (local) algorithm provided

marginal improvements over the original PFF and had a higher

cost of computation. Regularization of the covariance matrix

following [33], and an introduction of a resampling step

improved the performance of the PF. The relative performance

of the various filters is very similar when we compare the

tracking errors for the velocity components of the state.

The error propagation of the various filters with respect to
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TABLE II: Motion profile of ownship for various segments.

Time Interval ∆t ∆φ Motion Type ωo

(s) (s) (rad) (rad/s)

[[0, 15] 15 0 CV 0

[15, 31] 16 −π/4 CT −π/64
[31, 43] 12 0 CV 0

[43, 75] 32 π/2 CT π/64
[75, 86] 11 0 CV 0

[86, 102] 16 −π/4 CT −π/64
[102, 210] 108 0 CV 0

0 20 40 60 80 100
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20

40

60

80

100
Target and Ownship Trajectories

X(km)

Y
(k

m
)

 Target

 Ownship

Fig. 2: Target and ownship trajectories.

time is demonstrated in the boxplots provided in Fig. 3.

VI. CONCLUSIONS

In this paper, we consider the angle-only filtering problem

in 3D using bearing and elevation measurements, and present

a comparison of performance of various nonlinear filters

using relative Cartesian coordinates and modified spherical

coordinates (MSC). Of the algorithms considered here, the

EKF, UKF and DEnKF in MSC, and the PFF are found to

provide the best performance.

The MSC is the 3D analogue of the well-known modi-

fied polar coordinates (MPC) in 2D. In MPC, the bearing,

bearing-rate, range-rate divided by range form the observable

components of the state vector; while the inverse of range is

the unobservable component. Ill-conditioning of the covari-

ance matrix is prevented by decoupling the observable and

unobservable components in MPC, which yields better filter

performance than that using Cartesian coordinates [23]. For

MSC, the first five components are observable and the last

component is unobservable. Our results indicate that tracking

using MSC is beneficial because of this decoupling, although

TABLE III: Time-averaged RMS position error in kilometers.

Algorithm sdv (mrad) sdv (mrad) sdv (mrad)
1.0 15.0 35.0

CEKF 0.60 6.30 12.49

CUKF 0.61 5.61 10.64

CBPF 0.68 7.75 15.18

CSEnKF 0.70 7.45 14.23

CDEnKF 0.61 6.25 13.04

CPFF 0.56 4.11 8.55

CPFF(local) 0.55 4.14 8.08

EKF-MSC 0.54 4.46 9.98

UKF-MSC 0.54 4.44 9.99

BPF-MSC 3.63 7.40 12.60

SEnKF-MSC 0.65 5.69 12.78

DEnKF-MSC 0.54 4.48 10.25

PFF-MSC 0.54 4.45 10.07

TABLE IV: Final RMS position error in kilometers.

Algorithm sdv (mrad) sdv (mrad) sdv (mrad)
1.0 15.0 35.0

CEKF 0.41 3.73 5.42

CUKF 0.40 3.51 4.79

CBPF 0.51 6.04 8.39

CSEnKF 0.51 4.45 5.80

CDEnKF 0.42 3.73 5.68

CPFF 0.39 2.09 3.40

CPFF(local) 0.39 2.17 2.78

EKF-MSC 0.38 2.12 2.87

UKF-MSC 0.38 2.09 2.86

BPF-MSC 4.67 5.51 6.94

SEnKF-MSC 0.49 3.09 4.29

DEnKF-MSC 0.38 2.12 2.84

PFF-MSC 0.38 2.05 2.88
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Fig. 3: Boxplot of errors (in kilometer) over time, for the UKF-MSC, CEKF,
CBPF, CSENKF, CDENKF and CPFF, at measurement noise sdv = 15 milirad.
Boxes indicate 25-75 interquartile range; whiskers extend 1.5 times the range
and ‘+’ symbols indicate outliers lying beyond the whiskers.

the benefits are modest in our scenario.

As extensions of this work, we would like to consider

the realistic scenario of a maneuvering target. It would be

interesting to calculate the posterior Cramér Rao lower bound

(PCRLB) [40], [24] for the filtering problem which represents

the best achievable accuracy. This would enable a rigorous

comparison of the accuracy of the various filtering algorithms

discussed in this paper.
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TABLE V: CPU times of filtering algorithms for the measure-

ment standard deviation of 15 mrad.

Algorithm CPU (s) Relative CPU

CEKF 0.023 1.00

CUKF 0.052 2.26

CSEnKF 0.090 3.91

UKF-MSC 0.136 5.91

SEnKF-MSC 0.201 8.74

CBPF 0.503 21.87

CDEnKF 0.977 42.48

DEnKF-MSC 1.047 45.52

EKF-MSC 1.142 49.65

CPFF 1.257 54.65

BPF-MSC 1.270 55.21

PFF-MSC 1.335 58.04

CPFF(local) 6.784 294.95
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